An alternative ultrasonic method for measuring the elastic properties of cortical bone.

نویسندگان

  • M Pithioux
  • P Lasaygues
  • P Chabrand
چکیده

We studied the elastic properties of bone to analyze its mechanical behavior. The basic principles of ultrasonic methods are now well established for varying isotropic media, particularly in the field of biomedical engineering. However, little progress has been made in its application to anisotropic materials. This is largely due to the complex nature of wave propagation in these media. In the present study, the theory of elastic waves is essential because it relates the elastic moduli of a material to the velocity of propagation of these waves along arbitrary directions in a solid. Transducers are generally placed in contact with the samples which are often cubes with parallel faces that are difficult to prepare. The ultrasonic method used here is original, a rough preparation of the bone is sufficient and the sample is rotated. Moreover, to analyze heterogeneity of the structure we measure velocities in different points on the sample. The aim of the present study was to determine in vitro the anisotropic elastic properties of cortical bones. For this purpose, our method allowed measurement of longitudinal and transverse velocities (C(L) and C(T)) in longitudinal (fiber direction) and the radial directions (orthogonal to the fiber direction) of compact bones. Young's modulus E and Poisson's ratio nu, were then deduced from the velocities measured considering the compact bone as transversely isotropic or orthotropic. The results are in line with those of other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic characterization of porous bone by ultrasonic method through Lamb waves

The object of this research is to characterize the porous bones by an ultrasonic method using Lamb waves. In recent years, the characterization of such materials has attracted many authors and takes a perfect place in the field of medicine. It requires the development of more efficient technology for getting the necessary quality and security. This paper aims to exploits the dispersion curves o...

متن کامل

Using the Ultrasonic Nondestructive Methods for Prediction of Mechanical Properties of AISI 4140 Alloy Steel

Achieving the mechanical properties of steels after various manufacturing and heat treatment processes is significant and essential. In production lines, after producing the specific and standard samples, mechanical properties have been measured by destructive processes which cause waste of cost and time. In addition, destructive techniques cannot detect the miniscule changes made in mechanical...

متن کامل

Determination of Relationships between the Ultrasound Velocity and the Physical Properties of Bovine Cortical Bone Femur

Accurate measurements of physical characteristics of bone are essential for diagnosis, assessment of change following treatment, and therefore, indirectly, for evaluation of new forms of therapy. This is particularly true of osteoporosis and aging skeleton, in which fractures occur easily. Methods: In this study an ultrasonic system was set-up and calibrated on Plexiglas tubes of variable thick...

متن کامل

Material properties of mandibular cortical bone in the American alligator, Alligator mississippiensis.

This study reports the elastic material properties of cortical bone in the mandible of juvenile Alligator mississippiensis obtained by using an ultrasonic wave technique. The elastic modulus, the shear modulus, and Poisson's ratio were measured on 42 cylindrical Alligator bone specimens obtained from the lingual and facial surfaces of 4 fresh Alligator mandibles. The data suggest that the elast...

متن کامل

Comparison of Propagated Pulse in Phantom between Numerical Analysis Calculated by FDTD and Experiment

Ultrasonic measuring technique is widely using for diagnosis of osteoporosis because of its safety. A precise simulation, however, is not reported, because the behavior of ultrasonic pulse propagated in a human bone is very complicated. In this paper, ultrasonic pulse propagation in bone phantom is analyzed using elastic Finite Difference Time Domain (FDTD) method. This proposed method treats n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 35 7  شماره 

صفحات  -

تاریخ انتشار 2002